Human health is theoretically affected by swine health. Subclinical disease produces lesions at slaughter such as pleuritis or adhesions. These lesions may increase the probability of carcass contamination with human foodborne pathogens such as *Salmonella* or *Campylobacter*. However, data objectively quantifying the relationship between pig health and human health risk are currently lacking.

In this pilot study, we tested the hypothesis that a healthier animal produces meat with reduced bacterial risk. We attempted to determine how fecal bacterial carcass contamination correlates with subclinical physical indicators of disease by evaluating slaughter pigs at a large processing plant eight times, with each run representing ~330 head. Carcasses were swabbed at three points (skin pre-scald, bung and pleural cavities) during slaughter. Swabs were cultured for *Campylobacter* (an important human foodborne pathogen) and *Enterococcus* (an indicator of fecal contamination). Positive correlations were identified between bacterial contamination and pleuritis and pigs with respiratory distress. Preliminary results show about a 60% correlation between the number of *Campylobacter* positive carcasses and pleuritis.

These data demonstrate, and begin to quantify, the important potential impact of swine health on human health: for example, if 25% more pigs have pleuritis due to a change in management, then human health risk, measured in infectious servings produced per day, could increase as much as 32%. This preliminary analysis suggests that improving pig health with practices such as antibiotic use may actually decrease human risk from foodborne bacterial pathogens.